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Abstract A free-molecular gas contained in a static vessel with a uniform temperature is
considered. The approach of the velocity distribution function of the gas molecules from a
given initial distribution to the uniform equilibrium state at rest is investigated numerically
under the diffuse reflection boundary condition. This relaxation is caused by the interaction
of gas molecules with the vessel wall. It is shown that, for a spherical vessel, the velocity
distribution function approaches the final uniform equilibrium distribution in such a way
that their difference decreases in proportion to an inverse power of time. This is slower than
the known result for a rarefied gas with molecular collisions.

Keywords Free-molecular gas · Approach to equilibrium · Diffuse reflection · Kinetic
theory of gases

1 Introduction

Let us consider an ideal rarefied gas contained in a vessel kept at a uniform temperature. In
the absence of gravity, the steady state of the gas is uniform equilibrium at rest at the same
temperature as the vessel. If the equilibrium is perturbed, the state of the gas approaches the
equilibrium as time goes on. In the present paper, we are concerned with this approach.

When the mean free path of the gas molecules is not negligibly small compared with
the size of the vessel, continuum fluid dynamics is not valid, and we need to use kinetic
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theory to describe the above-mentioned approach to equilibrium. That is, it is described
by the Boltzmann equation with its initial and boundary conditions. It is intuitively clear
that the velocity distribution function of the gas molecules, starting from a given initial
distribution, approaches the global stationary Maxwellian distribution with a density given
by the average density of the initial distribution and with the same temperature as the vessel,
which we call the final equilibrium state. However, rigorous mathematical study concerning
the above statement is relatively recent [1–3].

In recent years, the rate of approach to the final equilibrium state has been an important
subject of mathematical study of the Boltzmann equation [4–9]. In [8], the following result
is reported. Let t∗ be the time variable, f∗ the velocity distribution function of the gas mole-
cules, and Mw∗ the final equilibrium distribution. If the boundary condition on the vessel
wall is diffuse reflection, then, it holds that

‖f∗ − Mw∗‖ = O(t−δ
∗ ), as t∗ → ∞, (1)

with any positive number δ, where ‖·‖ is a suitably defined norm. The rapid decay (1) is also
true for some different types of boundary condition on the vessel wall, such as the specular-
reflection and periodic conditions [4, 5]. However, for these boundary conditions, the tem-
perature of the final equilibrium state is determined by the initial condition. It should be
mentioned that exponential decay was recently proved [9] for the above-mentioned bound-
ary conditions with stronger mathematical results in the case where the solution is close to
the final equilibrium state (see also [10, 11] for the periodic condition).

The approach to equilibrium is caused by two factors:

(i) Collisions between gas molecules.
(ii) Interaction between gas molecules and the vessel wall.

The effect of factor (ii) is absent for the specular-reflection and periodic boundary condi-
tions.

Now let us consider the case where the gas is so rarefied that the interaction between the
gas molecules is neglected. Such a gas is called the free-molecular gas or the Knudsen gas,
characterized by infinitely large Knudsen number (the mean free path of the gas molecules
divided by the characteristic length of the vessel). In this case, the approach to the final equi-
librium state is caused only by factor (ii). Therefore, the manner of approach may depend
on the type of interaction between the gas molecules and the vessel wall, i.e., the boundary
condition of the Boltzmann equation, as well as the shape and space dimension of the ves-
sel. In fact, if the initial distribution is not an equilibrium state, the gas never approaches
the final equilibrium state for specular reflection and for the periodic condition, since these
conditions have no thermalizing effect. Furthermore, even for the boundary conditions with
thermalizing effect, the thermalization takes place non-uniformly in the molecular veloc-
ity space. That is, fast molecules hit the boundary and are thermalized quickly, whereas it
takes a long time for slow molecules to interact with the boundary. The non-uniform conver-
gence of the velocity distribution function in the molecular velocity space may cause a slow
approach of the velocity-averaged (or macroscopic) quantities to their equilibrium values.

The approach to the final equilibrium state for a free-molecular gas is a special case of
the approach to the stationary solution when the wall temperature is not uniform. The lat-
ter problem has been studied by several authors: for instance, [3] for the diffuse reflection
condition in the three-dimensional (3D) setting, [12, 13] for a more general boundary con-
dition in the one-dimensional (1D) setting, and [14] for a discrete-velocity model in the 1D
setting. In these works, however, the rate of approach has not been discussed. To the best
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of the authors’ knowledge, an exception is the recent work by Yu [15], in which an inter-
esting probabilistic method was developed for the approach to the stationary solution in the
1D setting (in a slab) for diffuse reflection. He was able to give detailed estimates for the
rate of the non-uniform convergence of the velocity distribution function mentioned above.
However, the optimal rate of approach to the final equilibrium state, which is comparable
with (1), has not yet been found. In this connection, we should also refer to a recent paper
by Desvillettes and Salvarani [16], which investigates the decay rate for a simple transport
equation with a collision term vanishing in a certain space domain.

In the present study, we investigate numerically the same problem (the approach of a
free-molecular gas to the final equilibrium state). We consider a free-molecular gas in a
vessel with a uniform temperature, on the wall of which the gas molecules undergo diffuse
reflection. We restrict ourselves to a vessel of spherical shape of dimension d , i.e., a sphere
for the 3D case (d = 3), a circular cylinder for the 2D case (d = 2), and a gap between
two parallel plates for the 1D case (d = 1). In addition, we are mainly concerned with the
spherically symmetric case with a special initial condition, i.e., a uniform equilibrium state
at rest with a (finite) temperature different from that of the vessel. These restrictions make
the computation for the 2D and 3D cases feasible. We will investigate the decay rate to
the final equilibrium state of the velocity distribution function as well as the macroscopic
quantities. As a result, we will give numerical evidence that the decay is in proportion to an
inverse power of time, for instance,

‖f∗ − Mw∗‖ ≈ C(d)/td∗ (d = 1,2,3), (2)

as t∗ → ∞, where ‖·‖ is a kind of L1 norm in the position and molecular velocity, and C(d)

are positive constants.

2 Formulation of the Problem

2.1 Problem, Assumptions, and Notations

Consider a rarefied monatomic gas in a vessel kept at a uniform and constant tempera-
ture Tw∗. If the state of the gas is given at initial time t∗ = 0, then it evolves in time and
approaches the final equilibrium state, i.e., the uniform equilibrium state at rest with tem-
perature Tw∗ and density equal to the average density of the initial state. We investigate the
process of approach numerically, with special interest in the asymptotic behavior of the gas,
under the following assumptions:

(i) The behavior of the gas is described by the Boltzmann equation.
(ii) The gas is so rarefied that the effect of collisions between the gas molecules is negligi-

ble (free-molecular or Knudsen gas).
(iii) The interaction between the gas molecules and the vessel wall is described by diffuse

reflection. That is, the gas molecules leaving the wall are distributed according to the
stationary Maxwellian distribution with temperature Tw∗, and the condition of no net
mass flux across the wall is satisfied.

(iv) The vessel is of spherical shape of dimension d with diameter L. To be more specific,
the vessel is a sphere of diameter L for d = 3, a circular cylinder of diameter L for
d = 2, and a gap of width L between two parallel plates for d = 1.
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Let ρ0∗ be the average density of the gas associated with the initial velocity distribution
function. Then, the final equilibrium distribution Mw∗ is given by

Mw∗ = ρ0∗
(2πRTw∗)3/2

exp

(
− ξ 2

i

2RTw∗

)
, (3)

where ξi is the molecular velocity, and R is the gas constant per unit mass (R = k/m with k

the Boltzmann constant and m the mass of a molecule). We take

L, Tw∗, ρ0∗, cw∗ = (2RTw∗)1/2, tw∗ = L/cw∗, (4)

as the reference length, temperature, density, velocity, and time, respectively. Let Xi be
the Cartesian coordinates in space, t∗ the time variable (as already appeared), f∗(Xi, ξi, t∗)
the velocity distribution function of the gas molecules, ρ∗(Xi, t∗) the density of the gas,
ui∗(Xi, t∗) the flow velocity, and T∗(Xi, t∗) the temperature. Then, we introduce the dimen-
sionless counterparts [xi , t , ζi , f , Mw , ρ, ui , T ] of [Xi , t∗, ξi , f∗(Xi, ξi, t∗), Mw∗, ρ∗(Xi, t∗),
ui∗(Xi, t∗), T∗(Xi, t∗)] by the following relations:

Xi = Lxi, t∗ = tw∗t, ξi = cw∗ζi,

f∗ = (ρ0∗/c3
w∗)f, Mw∗ = (ρ0∗/c3

w∗)Mw,

ρ∗ = ρ0∗ρ, ui∗ = cw∗ui, T∗ = Tw∗T .

(5)

We suppose that the spherical vessel (of dimension d) is given by Sd(xi) = 0 (d = 1,
2, 3) in the dimensionless xi space and its inside (the region of the gas) is described by
D = {xi | Sd(xi) < 0}. That is,

S1(x1) = x2
1 − 1

4
, (6a)

S2(x1, x2) = x2
1 + x2

2 − 1

4
, (6b)

S3(x1, x2, x3) = x2
1 + x2

2 + x2
3 − 1

4
. (6c)

In addition, ni(xi) = −∇Sd/|∇Sd | denotes the unit normal vector to the surface of the vessel
pointed toward the gas.

2.2 Basic Equation

The (dimensionless) Boltzmann equation for a free-molecular gas reads

∂f

∂t
+ ζi

∂f

∂xi

= 0, (7)

which is the so-called free transport equation. The corresponding initial condition is given
by

f (xi, ζi,0) = f0(xi, ζi), (8)

and the boundary condition (diffuse reflection) on the vessel wall by

f (xi, ζi, t) = fw(xi, ζi, t), for Sd(xi) = 0, ζini > 0, (9a)
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fw(xi, ζi , t) = ρw(xi, t)Mw(ζi), (9b)

ρw(xi, t) = −2π1/2
∫

ζj nj <0
ζjnjf (xi, ζi , t)dζ , (9c)

where dζ = dζ1 dζ2 dζ3, and Mw is the dimensionless reference Maxwellian (i.e., the dimen-
sionless final equilibrium distribution), i.e.,

Mw(ζi) = π−3/2 exp(−ζ 2
i ). (10)

Here, we exclude the initial condition f0 with the concentration of mass at ζi = 0 (e.g., f0

containing the Dirac delta centered at ζi = 0).
The density ρ, flow velocity ui , and temperature T are defined as the following moments

of f :

ρ(xi, t) =
∫

f dζ , (11a)

ui(xi, t) = 1

ρ

∫
ζif dζ , (11b)

T (xi, t) = 2

3ρ

∫
(ζi − ui)

2f dζ , (11c)

where, and in (12) and (13) below, the domain of integration is the whole space of ζi (or ξi ).
In addition, we introduce the (dimensionless) relative entropy W(f |Mw):

W(f |Mw) =
∫

f ln(f/Mw)dζ , (12)

the dimensional counterpart of which is given as

W∗(f∗|Mw∗) = ρ0∗W(f |Mw) =
∫

f∗ ln(f∗/Mw∗)dξ . (13)

As time goes on, f approaches the final equilibrium state Mw except at ζi = 0. Thus, we
have

lim
t→∞ ρw(xi, t) = 1, (14)

and

limt→∞ ρ(xi, t) = 1, limt→∞ ui(xi, t) = 0,

limt→∞ T (xi, t) = 1, limt→∞ W(f |Mw) = 0.
(15)

The fact that f approaches the unique limit Mw is intuitively obvious for a vessel of arbitrary
shape. However, its mathematical proof is relatively recent [1, 3].

When f∗ is a local Maxwellian distribution, W∗/ρ∗ reduces to ln(ρ∗/ρ0∗) − (3/2) ln(T∗/
Tw∗)+ (3/2)(T∗/Tw∗)+const, which can be expressed as (e∗ −Tw∗s∗)/RTw∗ +const, where
e∗ and s∗ are the internal energy and entropy per unit mass, respectively. Since F∗ = e∗ −
T∗s∗ is the Helmholtz free energy per unit mass, W∗ is similar to it. In particular, F∗ for
ρ∗ = ρ0∗ and T∗ = Tw∗ corresponds to W∗ = 0. Let us denote by 〈W 〉 the integral of W over
the vessel, i.e.,

〈W 〉 =
∫

D
W dx, (16)



Relaxation of a Free-Molecular Gas to Equilibrium Caused 523

Fig. 1 Configuration. The
relation between xi in the gas and
x′
i

on the vessel wall in terms of
the present time t , the time in the
past s, and the molecular
velocity ζi

with dx = dx1 dx2 dx3 and with the obvious interpretation in the 1D and 2D cases. Then,
we can show, from (7) and (9), that d〈W 〉/dt ≤ 0 and the equality sign holds if and only
if f = Mw (i.e., W = 0). This fact is consistent with the Helmholtz potential minimum
principle in thermodynamics [17]. Since 〈W 〉 has been used as a measure of deviation of f

from Mw (e.g., [4–6, 8, 12]), we also use it for the same purpose.

3 Preliminaries

In this section, we carry out some preliminary analyses for the numerical analysis. The
solution of the free transport equation (7) is expressed as

f (xi, ζi, t) = f (xi − ζi(t − s), ζi, s) (0 ≤ s ≤ t). (17)

That is, the velocity distribution function is constant along the trajectory of a molecule in
(xi, t) space. Therefore, one can obtain information on the velocity distribution function by
tracing back the trajectories of the molecules. If we trace back, from a given point (xi, t) in
(xi, t) space, the trajectory of a molecule with a given velocity ζi , we either reach the initial
time t = 0 without hitting the vessel wall, or hit the wall at time s in the past. The time s,
which is a function of xi , ζi , and t , is obtained as follows.

Since the molecule with velocity ζi that left the vessel wall at time s reaches the position
xi at time t , the following relation holds (see Fig. 1).

x ′
i = xi − (t − s)ζi, Sd(x

′
i ) = 0. (18)

Solving these equations for s, we obtain the departure time s(xi, ζi, t) together with the
departure point x ′

i . If s(xi, ζi, t) is negative, this means that the trajectory can be traced back
to the initial time without hitting the vessel wall. In such a case, the value of f (xi, ζi , t) is
given by the initial condition f0(xi, ζi).

From these facts, we can write the solution of the initial and boundary value problem
(7)–(9) formally in the following form:

f (xi, ζi, t) = f0(xi − ζi t, ζi), for ζi ∈ Ω0(xi, t), (19a)

f (xi, ζi, t) = fw(xi − ζi(t − s), ζi, s)

= ρw(xi − ζi(t − s), s)Mw(ζi), for ζi ∈ Ωw(xi, t), (19b)
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where Ω0 is the set of ζi for which (18) gives a negative solution s (s < 0), and Ωw the set
of ζi for which (18) gives a non-negative solution (0 ≤ s ≤ t ); s in (19b) is the non-negative
solution s(xi, ζi, t) of (18), i.e.,

Sd

(
xi − ζi[t − s(xi, ζi, t)]

)
= 0, 0 ≤ s(xi, ζi, t) ≤ t. (20)

(See the next paragraph for the explicit form of s(xi, ζi, t).) Since f0 is given, we have the
solution if ρw is found. Substitution of (19) into (9c) yields the following integral equation
for ρw:

ρw(xi, t)

2
√

π
= −

∫
ζj nj <0

ζi∈Ω0(xi ,t)

ζj njf0(xi − ζi t, ζi)dζ

−
∫

ζj nj <0
ζi∈Ωw(xi ,t)

ζj njMw(ζi)ρw(xi − ζi(t − s), s)dζ ,

for Sd(xi) = 0, (21)

where s is given by (20). Once ρw is obtained from (21), one obtains f from (19) and then
the macroscopic quantities from (11) and (12).

Equation (18) yields the following explicit expressions for s(xi, ζi, t), Ω0(xi, t), and
Ωw(xi, t) for the three-dimensional case (d = 3).

s(xi, ζi, t) = t − ζjxj

ζ 2
k

− 1

ζ 2
k

[
(ζj xj )

2 − ζ 2
k

(
x2

l − 1

4

)]1/2
, (22a)

Ω0(xi, t) =
{
(ζ1, ζ2, ζ3)

∣∣∣ (
ζj − xj

t

)2
<

1

4t2

}
, (22b)

Ωw(xi, t) =
{
(ζ1, ζ2, ζ3)

∣∣∣ (
ζj − xj

t

)2 ≥ 1

4t2

}
. (22c)

The corresponding results for the two- and one-dimensional cases (d = 2 and 1) are omitted
here.

4 Numerical Analysis

This section is devoted to the description of the numerical solution method. We first de-
scribe the solution method for the integral equation (21) for ρw and then comment on the
computation of the macroscopic quantities.

4.1 Integral Equation

4.1.1 Special Choice of Initial Condition and Simplification

At this point, we consider, as the initial condition, the stationary Maxwellian distribution
with temperature T0∗ and density ρ0∗, namely, a uniform equilibrium state at rest with a
temperature different from that of the vessel. Thus, its dimensionless form is given by

f0(ζi) = T
−3/2

0 Mw(ζi/T
1/2

0 ), (23a)

T0 = T0∗/Tw∗, (23b)
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where Mw(ζi) is given in (10). Since the vessel is spherically symmetric, the initial con-
dition (23), which is uniform in xi and isotropic in ζi , yields a solution ρw of (21) that is
independent of the position on the vessel wall:

ρw = ρw(t). (24)

This fact can be seen from (21) with the explicit form of s(xi, ζi , t), Ω0(xi, t), and Ωw(xi, t).
It should be noted that the same is true for any spherically symmetric initial conditions.
The case of a non-symmetric initial condition will be investigated for the one-dimensional
problem (d = 1) in Sect. 6.

In these circumstances, (21) is simplified drastically and is reduced to the following in-
tegral equation:

ρw(t) = Md(t) +
∫ t

0
kd(t − s)ρw(s)ds (d = 1,2,3). (25)

Here

M1(t) = √
T0

[
1 − exp

(
− 1

T0t2

)]
,

k1(t) = 2

t3
exp

(
− 1

t2

)
,

(26)

for d = 1,

M2(t) = −
√

π

t
Ī1

(
− 1

2T0t2

)
,

k2(t) =
√

π

t4

[
Ī0

(
− 1

2t2

)
+ (1 + t2)Ī1

(
− 1

2t2

)]
,

(27)

for d = 2, and

M3(t) = √
T0

[
1 − 2T0t

2 + (1 + 2T0t
2) exp

(
− 1

T0t2

)]
,

k3(t) = 4t −
(

4t + 4

t
+ 2

t3

)
exp

(
− 1

t2

)
,

(28)

for d = 3; Īn(y) in (27) is defined as

Īn(y) = exp(y)In(y), (29a)

In(y) = 1

π

∫ π

0
cos(nθ) exp(y cos θ)dθ, (29b)

where In(y) is the modified Bessel function of the first kind of order n. The kernel functions
kd(t) are shown in Fig. 2. As is seen easily, Md(t) and kd(t) decay as

Md(t) ≈ C
(d)
M /td+1, kd(t) ≈ C

(d)
k /td+2, (30)

as t → ∞, where C
(d)
M and C

(d)
k are positive constants. In addition, the following relation

holds: ∫ ∞

0
kd(t)dt = 1. (31)
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Fig. 2 The kernel functions
kd (t) versus t for d = 1,2,3. The
solid line indicates k1(t), the
dotted line k2(t), and the
dot-dashed line k3(t)

With the initial condition (23) and thus with (24), (19) reduces to a spherically symmetric
solution. More specifically, for d = 1, f = f (x1, ζ1, ζt , t) with ζt = (ζ 2

2 + ζ 2
3 )1/2, satisfy-

ing the condition f (x1, ζ1, ζt , t) = f (−x1,−ζ1, ζt , t) (symmetric with respect to the plane
x1 = 0 and without a flow parallel to the vessel wall); for d = 2, f = f (r̄, ζr̄ , |ζθ̄ |, |ζ3|, t),
where (r̄, θ̄ , x3) is the cylindrical coordinate system with r̄ = (x2

1 + x2
2 )

1/2, and ζr̄ and ζθ̄ are
the r̄ and θ̄ components of ζi (cylindrically symmetric and without axial or circumferential
flow); for d = 3, f = f (r, ζr , ζ⊥, t) with ζ⊥ = (ζ 2

θ + ζ 2
ϕ )1/2, where (r, θ,ϕ) is the spheri-

cal coordinate system with r = (x2
i )

1/2, and ζr , ζθ , and ζϕ are, respectively, the r , θ , and ϕ

components of ζi .
In the practical computation, in order to reduce the cancellation error, we analyze the fol-

lowing equation for U(t) = ρw(t)−1, which vanishes as t → ∞ [see (14)], rather than (25):

U(t) = Md(t) − Md(t)

∣∣∣
T0=1

+
∫ t

0
kd(t − s)U(s)ds. (32)

The main purpose of the present study is to clarify the asymptotic behavior of the so-
lution as t → ∞. This means that we have to obtain very small values of U = ρw − 1
with extremely high accuracy for a very long time. In general, such a computation is formi-
dable for the three-dimensional case and is very hard even for the two-dimensional case.
Thanks to the initial condition (23), the integral equation for ρw has been reduced to the
one-dimensional equation (25) or (32) irrespective of the dimension of the spherical vessel.
This makes the two- and three-dimensional problems tractable, without harming the two and
three dimensionality inherent to the problems.

4.1.2 Numerical Method

Numerical analysis of the integral equation (32) is straightforward and simple. Let �t be
the time step, tn = n�t (n = 0,1,2, . . .) the discretized time variable, and Un = U(tn). If
the integral in (32) at t = tn is approximated in terms of Um as

n∑
m=0

AmUm, (33)

where Am depends on the quadrature for the numerical integration, then (32) at t = tn gives

Un =
[
Md(tn) − Md(tn)

∣∣∣
T0=1

+
n−1∑
m=0

AmUm

]
(1 − An)

−1. (34)
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The sequence {Un} (n = 0,1,2, . . .) is determined by (34), and we suppose that Un thus
obtained is an approximate solution of U(t) at t = tn.

For the 1D case (d = 1), we use the simple trapezoidal rule to determine Am in (33).
For the 2D and 3D cases (d = 2, 3), we approximate U(t) for t ∈ [tm−1, tm] by the linear
function, i.e., U(t) ≈ (Um − Um−1)(t − tm−1)/�t + Um−1, and carry out the integration for
each interval [tm−1, tm] (m = 1,2, . . . , n) analytically to obtain Am in (33). The explicit form
of Am is omitted here.

4.1.3 Remark

The integral equation (25) is the classical renewal equation (see, e.g., [18, 19]), and the
asymptotic behavior of the solution as t → ∞ is studied in [18]. If we apply Theorem 4 in
[18] to (25), we obtain the following estimate

|ρw(t) − 1| = o(t2−d), as t → ∞, (35)

for d = 2 and 3. The 1D case does not satisfy the condition of the theorem (the boundedness
of the first-order moment of the kernel). In Sect. 5.2.1, our numerical result will show a
decay rate (46). Although the estimate (35) is not sharp at all, the decay rate (46) falls in the
range expressed by (35). As for the 1D case, Theorem 2 of [15] gives the estimate

|ρw(t) − 1| = O(t−1/10), as t → ∞. (36)

Our numerical result (46) (with d = 1) is contained in this range, though it is not sharp
enough, too.

4.2 Macroscopic Quantities

4.2.1 Preliminaries

Before presenting the method of computation of the macroscopic quantities, we introduce
some additional quantities whose numerical results will also be presented in Sect. 5.

We first define the following marginals of f and Mw for the 1D and 2D cases:

f̃ (x1, ζ1, t) =
∫ ∞

−∞

∫ ∞

−∞
f dζ2 dζ3, (37a)

M̃w =
∫ ∞

−∞

∫ ∞

−∞
Mw dζ2 dζ3 = 1√

π
exp(−ζ 2

1 ), (37b)

for d = 1, and

f̃ (2)(r̄, ζr̄ , |ζθ̄ |, t) =
∫ ∞

−∞
f dζ3, (38a)

M̃(2)
w =

∫ ∞

−∞
Mw dζ3 = 1

π
exp(−ζ 2

r̄ − ζ 2
θ̄
), (38b)

for d = 2. In addition, we introduce the following L1 norm of f̃ − M̃w (d = 1) in ζ1, that of
f̃ (2) − M̃(2)

w (d = 2) in (ζr̄ , ζθ̄ ), and that of f − Mw (d = 3) in ζi , respectively:

‖�f ‖(1)(|x1|, t) =
∫ ∞

−∞
|f̃ − M̃w|dζ1, (39a)
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‖�f ‖(2)(r̄, t) =
∫ ∞

−∞

∫ ∞

−∞
|f̃ (2) − M̃(2)

w |dζr̄ dζθ̄ , (39b)

‖�f ‖(3)(r, t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
|f − Mw|dζr dζθ dζϕ. (39c)

We further introduce the average of the above L1 norms in the vessel, i.e.,

‖�f ‖(d)(t) = 2dd

∫ 1/2

0
‖�f ‖(d)dμ(d) (d = 1,2,3), (40)

where dμ(1) = dx1, dμ(2) = r̄ dr̄ , and dμ(3) = r2 dr .

4.2.2 Numerical Method

Once ρw(t) is known, the macroscopic quantities ρ, ui , T , and W are obtained by using (19)
in (11) and (12). In the present spherically symmetric case, we can calculate the macroscopic
quantities at the point (x1,0,0) (0 ≤ x1 ≤ 1/2). For instance, in the 3D case, h(r, t) for
r = x1, any θ , and any ϕ (h = ρ, ur , T , etc., where ur is the r component of ui ) is given by
h(x1,0,0, t) (h = ρ, u1, T , etc.).

The macroscopic variables at (x1,0,0) (0 ≤ x1 ≤ 1/2) are expressed as

ρ = F(0,0,0) + P(0,0,0), u1 = 1

ρ
(F(1,0,0) + P(1,0,0)), (41a)

T = 2

3ρ
(F(2,0,0) + F(0,2,0) + F(0,0,2)

+ P(2,0,0) + P(0,2,0) + P(0,0,2) − ρu2
1), (41b)

W = Q(0,0,0) − 3

2
lnT0F(0,0,0)

+
(

1 − 1

T0

)
(F(2,0,0) + F(0,2,0) + F(0,0,2)), (41c)

where

F(n1,n2,n3) =
∫

ζi∈Ω0

ζ
n1
1 ζ

n2
2 ζ

n3
3 f0(ζi)dζ , (42a)

P(n1,n2,n3) =
∫

ζi∈Ωw

ζ
n1
1 ζ

n2
2 ζ

n3
3 Mw(ζi)ρw(s)dζ , (42b)

Q(n1,n2,n3) =
∫

ζi∈Ωw

ζ
n1
1 ζ

n2
2 ζ

n3
3 Mw(ζi)ρw(s) lnρw(s)dζ , (42c)

Ω0, Ωw , and s, which have occurred in (21), are evaluated at (x1,0,0), and ur̄ (the r̄ com-
ponent of ui ) and ur at (x1,0,0) are represented by u1.

The F(n1,n2,n3) contained in (41) can be obtained analytically in the form including the
error and exponential functions for d = 1 and can be reduced to single integrals including
the sinusoidal, error, and exponential functions for d = 2 and 3. On the other hand, the
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P(n1,n2,n3) and Q(n1,n2,n3) can be expressed in the form of convolution:

P(n1,n2,n3) =
∫ t

0
Kd(x1, t − s)ρw(s)ds, (43a)

Q(n1,n2,n3) =
∫ t

0
Kd(x1, t − s)ρw(s) lnρw(s)ds, (43b)

where s is the integration variable. The kernel Kd is expressed analytically in terms of the
exponential function for d = 1 and is expressed in the form of a single integral of a function
containing the sinusoidal and exponential functions for d = 2 and 3. The explicit form of
F(n1,n2,n3) and Kd are omitted for conciseness.

The single integrals in F(n1,n2,n3) and Kd for d = 2 and 3 are evaluated numerically using
the Gaussian quadrature, and the accuracy with an error less than 10−16 is attained. As for the
convolutions (43), we use the values of ρw at t = tn [ρw(tn) = Un +1] obtained in Sect. 4.1.2.
More specifically, the integral with respect to s is divided into the integrals over small inter-
vals [sm−1, sm] (sm = m�t ), in each of which ρw(s) is approximated by the linear function,
and the integration over each interval is performed numerically using the Gaussian quadra-
ture. The linear approximation of ρw is legitimate because the change of ρw(s) is moderate
and the behavior of the integrands Kd(x1, t − s)ρw(s) and Kd(x1, t − s)ρw(s) lnρw(s) is
dominated by that of Kd(x1, t − s). In fact, as the point (x1,0,0) approaches the vessel wall
(x1 ≈ 1/2), the change of Kd becomes steeper. In such a case, we ought to decrease the size
of the small intervals [sm−1, sm], i.e., the time step �t . That is, the smallness of the time step
�t in solving (32) is determined not only by the behavior of the solution itself but also by
the requirement that the integrals (43) be obtained accurately even near the vessel wall. Inci-
dentally, the values of the macroscopic quantities at the vessel wall (x1 = 1/2) are obtained
differently.

The computation of the L1 norms (39) is similar to that of ρ. In fact, we can show that
there is a time tc (depending on d and T0) such that, for t > tc , the f − Mw , f̃ − M̃w , or
f̃ (2) − M̃(2)

w in (39) does not change sign. Therefore, if we restrict ourselves to the long-time
behavior, the computation is essentially the same as that for ρ.

5 Results of Numerical Analysis

In this section, we summarize the results obtained by numerical analysis. Here, it should
be recalled that the numerical computation is based on the initial condition (23). If a more
general initial condition with the concentration of mass at ζi = 0 is considered (e.g., a class
of functions with 〈W(f0|Mw)〉 being finite), the resulting decay rate, (46), (48), and (49),
may change.

5.1 Short- and Intermediate-Time Behavior

First, we show some results for relatively short times. Figure 3 shows the time evolution of
the profiles of the density, flow velocity, and temperature for T0 = 2 in the 1D case (d = 1):
Figs. 3(a), (b), and (c) are, respectively, for 0.01 ≤ t ≤ 0.1, 0.1 ≤ t ≤ 0.398, and 0.398 ≤
t ≤ 1. Disturbances are created at the boundary and propagate in the interior domain. At
t = 1, ρ and u1 are already close to their final values (ρ = 1 and u1 = 0), whereas T is
still far from it (T = 1) though T is almost uniform. In the 2D and 3D cases, the results for
which are omitted here, the disturbances are larger, but decay faster.



530 T. Tsuji et al.

Fig. 3 Short-time behavior of ρ, u1 and T for T0 = 2 in the 1D case (d = 1): ρ, u1, and T vs x1 for
0 ≤ x1 ≤ 0.5. (a) t = 0.01, 0.0158, 0.0251, 0.0398, 0.0631, 0.1, (b) t = 0.1, 0.125, 0.158, 0.199, 0.251,
0.398, (c) t = 0.398, 0.501, 0.631, 0.794, 1

Figures 4 and 5 show the time evolution of the marginal velocity distribution function f̃

defined by (37a) for the 1D case as the function of ζ1 at the center of the gap x1 = 0 and at
x1 = 0.4; the upper figures show f̃ at x1 = 0, and the lower at x1 = 0.4; Figs. 5(a)–(d) are
enlarged versions of Figs. 4(e)–(h) near ζ1 = 0; the dashed line indicates the marginal M̃w

(37b) corresponding to the final steady state Mw .
In the 1D case with the initial condition (23), the marginal f̃ is expressed as [cf. (19)]

f̃ (x1, ζ1, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
πT0

exp(− ζ 2
1

T0
), (

x1−1/2
t

< ζ1 <
x1+1/2

t
),

1√
π
ρw(t − x1−1/2

ζ1
) exp(−ζ 2

1 ), (ζ1 <
x1−1/2

t
),

1√
π
ρw(t − x1+1/2

ζ1
) exp(−ζ 2

1 ), (
x1+1/2

t
< ζ1).

(44)

Let us consider the evolution of f̃ at x1 = 0 (upper figures of Figs. 4 and 5), referring to
(44). The molecules in the range −1/2t < ζ1 < 1/2t , which shrinks as time goes on, come
directly from the initial distribution without interaction with the walls (see Figs. 4 and 5). At
the initial stages, the molecules distributed according to the initial distribution impinge on
the walls and are reflected. Since T0 > 1 in Figs. 4 and 5, the reflected molecules are cooled
down. In other words, less fast molecules (the molecules with large |ζ1|) and more slow
molecules (the molecules with small |ζ1|) are produced by the reflection. At an early time
[Fig. 4(c)], only the less-crowded fast molecules among the reflected molecules can reach
the point x1 = 0. Therefore, the high-speed tail of the distribution is reduced compared
with the initial distribution. At a later time [Fig. 4(d)], the more-crowded slow molecules
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Fig. 4 Time evolution of the marginal velocity distribution function f̃ (x1, ζ1, t) for T0 = 2 in the 1D case
(d = 1). f̃ vs ζ1 is shown at different times. (a) t = 0.01, (b) t = 0.06, (c) t = 0.39, (d) t = 1.00, (e) t = 2.51,
(f) t = 4.64, (g) t = 11.65, (h) t = 100.00. Here, the upper figures show the results at x1 = 0, and the lower
at x1 = 0.4; the dashed line indicates M̃w

with speed |ζ1| ≈ 1/2t (1/2t < |ζ1| < 1/2t + δ with δ a small number) reflected at the
initial stages reach the point x1 = 0. This results in a significant increase of f̃ for this speed
range. At large times [Figs. 4(e)–(h) and Figs. 5(a)–(d)], the range of the more-crowded slow
molecules with speed |ζ1| ≈ 1/2t reflected at the initial stages is more and more localized
because slightly faster molecules have already experienced many reflections, so that they
are well accommodated with the walls (or they are close to the final equilibrium state). At
point x1 = 0.4, which is closer to the right wall (x1 = 1/2), the increase of f̃ for negative ζ1

is observed much earlier [Fig. 4(c)] than at x1 = 0, since the more-crowded slow molecules
reflected on the right wall at the initial stages reach the point (x1 = 0.4) much earlier than
the corresponding molecules from the left wall (x1 = −1/2). However, except for the non-
symmetry, the manner of deformation of f̃ is essentially the same.

The localized deviation in f̃ in the neighborhood of ζ1 = (x1 ± 1/2)/t exists forever
though the range shrinks as time goes on. This is a sort of long-memory effect originating
from the very initial stages, which leads to the slow decay of the velocity-averaged quanti-
ties, as we will see in Sect. 5.2.
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Fig. 5 Time evolution of the marginal velocity distribution function f̃ (x1, ζ1, t) for T0 = 2 in the 1D case
(d = 1). (a) t = 2.51, (b) t = 4.64, (c) t = 11.65, (d) t = 100.00. Figures (a), (b), (c) and (d) are enlarged
versions of Figs. 4(e), (f), (g) and (h), respectively. See the caption of Fig. 4

A mathematical description (estimate) corresponding to the deformation of the velocity
distribution function explained in the preceding paragraphs is given in [15]. The effect of
the slow molecules (or molecules moving parallel to the boundary) also manifests itself in
the diffusion limit where the thickness of the channel containing a free-molecular gas is led
to zero [20–22]. It should also be mentioned that a different type of long-memory effect,
arising in the unsteady motion of a body in a free-molecular gas, has been investigated in
[23–26].

5.2 Long-Time Behavior and Approach to Equilibrium

Next, we investigate the long-time behavior and the approach to the final equilibrium state,
which is the main purpose of the present study. In what follows, the logarithm log(·) indi-
cates the common logarithm with base 10.

5.2.1 ρw(t)

The crucial quantity is ρw(t), from which the velocity distribution function and thus all the
macroscopic quantities can be obtained. The long-time behavior of ρw is shown in Fig. 6
and Table 1 for the 1D, 2D, and 3D cases. Figure 6(a) shows log |ρw − 1| versus log t for
T0 = 2, and Fig. 6(b) the gradients of the curves in Fig. 6(a) versus log t . Here, α(h) for a
function h(t) is defined by

α(h) = d log |h(t) − h∞|/d log t, (45)

where h∞ indicates the equilibrium value of h(t), e.g., ρw∞ = 1. Table 1 contains the values
of α(ρw) at large times for different T0. From these results, it is highly probable that ρw − 1
decays as

|ρw − 1| ≈ C(d)
w /td (d = 1,2,3), (46)

with positive constants C(d)
w .
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Fig. 6 Long-time behavior of ρw for different dimension d = 1, 2, and 3 for T0 = 2. (a) log |ρw − 1| vs
log t , (b) α(ρw) vs log t

Table 1 Values of α(ρw) at large times for different T0

−α(ρw) (d = 1)

t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

316 2.5 0.984778 0.984559 0.984292 0.984178

1000 3.0 0.993830 0.993760 0.993673 0.993637

3162 3.5 0.997626 0.997604 0.997576 0.997565

10000 4.0 0.999117 0.999110 0.999101 0.999098

−α(ρw) (d = 2)

t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

316 2.5 1.993056 1.992784 1.992415 1.992248

1000 3.0 1.997843 1.997756 1.997638 1.997585

3162 3.5 1.999323 1.999295 1.999258 1.999241

10000 4.0 . . . . . . . . . 1.999760

−α(ρw) (d = 3)

t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

316 2.5 2.995022 2.994742 2.994320 2.994118

1000 3.0 2.998437 2.998348 2.998214 2.998150

3162 3.5 . . . . . . . . . 2.999415

5011 3.7 . . . . . . . . . 2.999626

5.2.2 Global Quantities

Next, we show the long time behavior of the global quantities, ‖�f ‖(d)(t) (40) and W(t),
where W(t) is defined by (40) with ‖�f ‖(d) replaced by W (12) [note that W = W(|x1|, t)
for d = 1, W = W(r̄, t) for d = 2, and W = W(r, t) for d = 3 in the present case]. It should
be noted that

W = 〈W 〉/vol(D), (47)
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Fig. 7 Long-time behavior of W and ‖�f ‖(d) for different dimension d = 1, 2, and 3 for T0 = 2. (a) log |W |
vs log t , (b) α(W) vs log t , (c) log‖�f ‖(d) vs log t , (d) α(‖�f ‖(d)) vs log t

Table 2 Values of α(W) and α(‖�f ‖(d)) at t = 10000 for d = 1 and t = 1000 for d = 2 and 3

−α(W)

d t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

1 104 4 1.000028 1.000027 1.000025 1.000025

2 103 3 . . . . . . . . . 2.000194

3 103 3 . . . . . . . . . 3.000163

−α(‖�f ‖(d))

d t log t T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

1 104 4 0.999999 0.999999 0.999999 0.999999

2 103 3 . . . . . . . . . 1.999997

3 103 3 . . . . . . . . . 2.999998

where 〈W 〉 is defined in (16), vol(D) is the volume of the vessel (with the obvious inter-
pretation in the 1D and 2D cases) in the dimensionless xi space. Figure 7(a) shows log |W |
versus log t for −2 ≤ log t ≤ 3, and Fig. 7(b) the gradients α(W) [cf. (45)] of the curves
in Fig. 7(a) versus log t ; Fig. 7(c) shows log‖�f ‖(d) versus log t for 1 ≤ log t ≤ 3, and
Fig. 7(d) the gradients α(‖�f ‖(d)) of the curves in Fig. 7(c) versus log t . Table 2 shows the
values of the gradients α(W) and α(‖�f ‖(d)) at t = 10000 for T0 = 0.5, 0.8, 1.5, and 2 in
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the 1D case and those at t = 1000 for T0 = 2 in the 2D and 3D cases. As mentioned in the
last paragraph in Sect. 2.2, 〈W 〉 and thus W decrease monotonically. In order to demonstrate
this property, the curves in Fig. 7(a) are plotted from a very short time (t = 0.01). Figure 7
and Table 2 provide numerical evidence that W and ‖�f ‖(d) decay as

|W | ≈ C
(d)

W /td , ‖�f ‖(d) ≈ C
(d)

� /td (d = 1,2,3), (48)

where C
(d)

W and C
(d)

� are positive constants, that is, evidence that (2) is true.

5.2.3 Local Macroscopic Quantities

Finally, we show the long-time behavior of the local macroscopic quantities. Figure 8(a)
shows log |W | versus log t , Fig. 8(b) the gradients α(W) [cf. (45)] of the curves in Fig. 8(a)
versus log t , Fig. 8(c) log‖�f ‖(1) versus log t , and Fig. 8(d) the gradients α(‖�f ‖(1)) [cf.
(45)] of the curves in Fig. 8(c) versus log t , at several x1 for T0 = 2 in the 1D case (d = 1).
In Fig. 9, we show the behavior of the density ρ, flow velocity u1, and temperature T at
some points for T0 = 2 in the 1D case (d = 1); Fig. 9(a) is the plot of log |h − h∞| versus
log t , where h = ρ, u1, and T (ρ∞ = T∞ = 1, u1∞ = 0), and Figs. 9(b), (c), and (d) show
the gradients of the curves in Fig. 9(a) for ρ, u1, and T , respectively. Figures 10(a), (b),
and (c) are the figures in the 2D case (d = 2) and Figs. 11(a), (b), and (c) those in the
3D case (d = 3) corresponding to Figs. 8(a), 8(c), and 9(a) [the curves at less points are
shown in Figs. 10(a), 10(b), 11(a), and 11(b)]. The curves for the evolution of the gradients
corresponding to Figs. 8(b), 8(d), 9(b), 9(c), and 9(d) are omitted for the 2D and 3D cases.
Table 3 contains the values of the gradients α(h) with h = W , ‖�f ‖(d), ρ, u1 (d = 1), ur̄

(d = 2), ur (d = 3), and T at a point (x1 = 0.2 for d = 1, r̄ = 0.2 for d = 2, and r = 0.2
for d = 3) for various T0 at a long time (t = 10000 for d = 1, t = 3162 for d = 2, and
t = 1000 for d = 3). From these results, we observe that α(W), α(‖�f ‖(d)), and α(T ) tend
to approach −d , whereas α(ρ) tends to approach −(d + 1). In addition, α(u1), α(ur̄ ), and
α(ur) tend to approach −3, −4, and −5, respectively. This gives numerical evidence of the
following decay rates:

|W | ≈ C
(d)
W /td , ‖�f ‖(d) ≈ C

(d)
� /td ,

|T − 1| ≈ C
(d)
T /td , |ρ − 1| ≈ C(d)

ρ /td+1,

|u1| ≈ C
(1)

1 /t3, |ur̄ | ≈ C
(2)
r̄ /t4, |ur | ≈ C(3)

r /t5,

(49)

where C
(d)
W , C

(d)
� , etc. are positive constants, depending on the position in space. As we can

see from Figs. 8–11, it is likely that C
(d)
W , C

(d)
� , and C

(d)
T are independent of position. It

should be noted that the density and flow velocity decay faster than the temperature, relative
entropy (W ), and L1 norm (‖�f ‖(d)).

5.2.4 Remarks on Accuracy of Computation

The accuracy of the numerical solution of (32) depends on the quadrature for numerical
integration (33) and the time step �t . The results in Table 1 are obtained with �t = 0.002.
In the case of T0 = 2, we have also carried out the computation with different time steps,
�t = 0.01, 0.005, and 0.001, until log t = 4 (d = 1) and 3 (d = 2,3). The results for α(ρw)

based on different time steps agree until the seventh decimal place. Therefore, it is highly
probable that all the values in Table 1 are accurate until the last decimal place. In the 3D



536 T. Tsuji et al.

Fig. 8 Long-time behavior of W and ‖�f ‖(1) at x1 = 0, 0.1, 0.2, 0.3, 0.4, 0.45, 0.49 for T0 = 2 (d = 1).
(a) log |W | vs log t , (b) α(W) vs log t , (c) log‖�f ‖(d) vs log t , (d) α(‖�f ‖(1)) vs log t

case, the decay of |ρw −1| is faster, and it becomes less than 10−13 at log t = 4. Therefore, it
becomes very difficult to obtain the gradient of the curve accurately by the method described
in the last paragraph in this subsection. In fact, the curve for d = 3 in Fig. 6(b) exhibits small
oscillation for log t close to 4. This is the reason why α(ρw) for d = 3 and T0 = 2 is shown
only up to log t = 3.7 in Table 1.

As explained in the second from last paragraph in Sect. 4.2.2, if we want to obtain the
macroscopic quantities accurately near the vessel wall, we need a time step smaller than
required by (32) itself. The time step �t = 0.002, which might appear unnecessarily small,
is chosen in such a way that the macroscopic variables at (0.49,0,0) are obtained accurately.

The results in Table 3 are also based on �t = 0.002. At log t = 3 and at x1 = 0, 0.2, and
0.4 (x2 = x3 = 0), the gradients α(W), α(‖�f ‖(d)), and α(T ) with �t = 0.002 agree with
those with �t = 0.001 up to the fifth decimal place for d = 1, 2, and 3. But, the agreement
is one or two fewer decimal places for α(ρ) and α(u) (u = u1, ur̄ , or ur ).

The values of α(W) and α(‖�f ‖(d)) in Table 2 are also based on the data obtained with
�t = 0.002. Here, the integration with respect to the space variable [cf. (40)] is carried out
analytically for d = 1 and numerically for d = 2 and 3. In the latter, Simpson’s rule with a
uniform interval �x (x = r̄ or r) is used. The data for d = 2 and 3 in Table 2 are obtained
with �x = 0.005. However, the results obtained with �x = 0.025 and 0.01 do not show any
difference from the values in Table 2.

The gradient α(ρw) [cf. (45)] shown in Fig. 6(b) and Table 1 is evaluated by simple
linear approximation, i.e., α(ρw)(tn) = (log |Un| − log |Un−1|)/(log tn − log tn−1). On the
other hand, once ρw(t) is obtained, we can obtain the macroscopic quantities at any point in
space and at any t . We evaluate the macroscopic quantities at discrete t ’s, say t = t̄m, which
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Fig. 9 Long-time behavior of ρ, u1 and T at x1 = 0.1, 0.2, 0.3, 0.4 for T0 = 2 (d = 1). (a) log |h − h∞|
vs log t , where h = ρ, u1 and T , (b) α(ρ) vs log t , (c) α(u1) vs log t , (d) α(T ) vs log t . Here, the solid line
indicates the quantities at x1 = 0.1, the dashed line at x1 = 0.2, the long-dashed line at x1 = 0.3, and the
dot-dashed line at x1 = 0.4

are distributed uniformly in log t (50 points in the interval n < log t ≤ n + 1 with n being
integer). Then, the gradient α(h) is obtained by simple linear approximation.

The computation was carried out with quadruple precision. If we perform the compu-
tation with double precision, we are not able to show the convergence of the gradients
α(ρw), α(W), α(ρ), etc. It should be mentioned that we have employed fast algorithms
for the error and Bessel functions provided by T. Ooura, available from his home page
(http://www.kurims.kyoto-u.ac.jp/~ooura/index.html). The algorithms are for double preci-
sion, but we have confirmed that they give an accuracy of 19 significant figures if they are
used in a quadruple-precision computation.

The computation has been carried out on a PC cluster with CPU: Intel(R) Core 2 Extreme
QX9650 3.0 GHz(4CPU) × 8.

6 Non-Symmetric Initial Condition (One-Dimensional Case)

In Sects. 4 and 5, we investigated the time evolution of the solution with initial condition
(23), i.e., a uniform equilibrium state at rest with a temperature different from the temper-
ature of the vessel wall. In this section, restricting ourselves to the 1D case, we repeat the
same computation with a non-symmetric initial condition. Our initial condition is

f0(x1, ζi) = ρ in(x1)

[πT in(x1)]3/2
exp

(
− [ζ1 − uin

1 (x1)]2 + ζ 2
2 + ζ 2

3

T in(x1)

)
, (50)

http://www.kurims.kyoto-u.ac.jp/~ooura/index.html
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Fig. 10 Long-time behavior of W , ‖�f ‖(2), ρ, ur̄ , and T at r̄ = 0.1, 0.2, 0.3, 0.4 for T0 = 2 (d = 2).
(a) log |W | vs log t . (b) log‖�f ‖(2) vs log t . (c) log |h − h∞| vs log t , where h = ρ, ur̄ , and T . Here, the
solid line indicates the quantities at r̄ = 0.1, the dashed line at r̄ = 0.2, the long-dashed line at r̄ = 0.3, and
the dot-dashed line at r̄ = 0.4

where

ρ in(x1) = 1 + aρ cos(2πmρx1 + bρ), (51a)

uin
1 (x1) = au cos(2πmux1 + bu), (51b)

T in(x1) = 1 + aT cos(2πmT x1 + bT ). (51c)

Equation (50) is the local Maxwellian distribution with density ρ in(x1)ρ0∗, flow velocity
(uin

1 (x1)cw∗, 0, 0), and temperature T in(x1)Tw∗. It should be noted that (50) with (51) is a
mild function without the concentration of mass at ζi = 0. In the present case, (21) yields a
coupled integral equation of renewal type for ρw−(t) ≡ ρw (at x1 = −1/2) and ρw+(t) ≡ ρw

(at x1 = 1/2) in place of (25) with (26). We have carried out computations for different val-
ues of the parameters aρ , mρ , etc. Here, we give only the result for the long-time behavior of
one case: (aρ, bρ,mρ) = (0.5,1,1), (au, bu,mu) = (0.5,1,1), (aT , bT ,mT ) = (0.5,2,1.5).

We show the long-time behavior of ρw±(t) in Fig. 12: Fig. 12(a) shows log |ρw± − 1|
versus log t , and Fig. 12(b) the gradients α(ρw±) [cf. (45)] versus log t . The values of the
gradients α(ρw±) at some large times are shown in Table 4. It is seen from these results that
ρw±(t) − 1 tend to decay as (46) with d = 1. Figure 13(a) shows the plots of log |W | and
log‖�f ‖(1) versus log t , and Fig. 13(b) the gradients α(W) and α(‖�f ‖(1)) versus log t .
Figures 14(a), (b), and (c) are the figures corresponding to Figs. 8(a), 8(c), and 9(a) [the
curves at less points are shown in Figs. 14(a) and (b)]. The curves for the evolution of the
gradients corresponding to Figs. 8(b), 8(d), 9(b), 9(c), and 9(d) are omitted in the present
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Fig. 11 Long-time behavior of W , ‖�f ‖(3), ρ, ur , and T at r = 0.1, 0.2, 0.3, 0.4 for T0 = 2 (d = 3).
(a) log |W | vs log t . (b) log‖�f ‖(3) vs log t . (c) log |h − h∞| vs log t , where h = ρ, ur , and T . Here, the
solid line indicates the quantities at r = 0.1, the dashed line at r = 0.2, the long-dashed line at r = 0.3, and
the dot-dashed line at r = 0.4

Fig. 12 Long-time behavior of ρw−(t) and ρw+(t) for the non-symmetric initial condition (d = 1).
(a) log |ρw± − 1| vs log t . (b) α(ρw±) vs log t

case. Table 5 shows the values of the gradients α(h) with h = W , ‖�f ‖(1), ρ, u1, and T at
a point (x1 = 0.2) at a long time (t = 2000). It is seen from these results that the manner of
approach to the final equilibrium state expressed by (48) and (49) is also true in the present
case.

It should be noted that, with the non-symmetric initial condition (50), the computation
becomes more difficult than that in Sects. 4 and 5 to obtain an accurate solution [even
with (50), if ρ in(x1), uin

1 (x1), and T in(x1) are chosen in such a way that ρw−(0) = ρw+(0)
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Table 3 Values of α(h) at large t for different T0 (d = 1, 2, 3)

−α(h) (d = 1, x1 = 0.2, t = 10000)

h T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

W 1.000040 1.000064 1.000006 1.000014

‖�f ‖(1) 0.999994 0.999994 0.999994 0.999994

ρ 1.998055 1.997862 1.998454 1.998414

u1 2.997527 2.998085 2.996390 2.996803

T 0.999811 0.999824 0.999844 0.999854

−α(h) (d = 2, r̄ = 0.2, t = 3162)

h T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

W 1.999919 1.999677 2.000857 2.000198

‖�f ‖(2) 2.000031 2.000031 2.000030 2.000030

ρ 2.998974 2.999090 2.998970 2.998987

ur̄ 3.998626 3.998776 3.998653 3.998672

T 1.999657 1.999657 1.999638 1.999626

−α(h) (d = 3, r = 0.2, t = 1000)

h T0 = 0.5 T0 = 0.8 T0 = 1.5 T0 = 2.0

W 2.999493 2.998174 3.001350 3.000942

‖�f ‖(3) 3.000166 3.000166 3.000166 3.000167

ρ 3.998371 3.998527 3.998369 3.998338

ur 4.997977 4.998174 4.998001 4.997962

T 2.999152 2.999049 2.998942 2.998874

Fig. 13 Long-time behavior of W and ‖�f ‖(1) for the non-symmetric initial condition (d = 1). (a) log |W |
and log‖�f ‖(1) vs log t . (b) α(W) and α(‖�f ‖(1)) vs log t . Here, solid line indicates the quantities of W ,

and the dashed line those of ‖�f ‖(1)

holds at t = 0, it becomes easier to get an accurate result]. Therefore, a smaller time step
and a more accurate interpolation formula have been used to obtain the results shown
in this section. For instance, �t = 0.001 is used, and the quartic approximation, rather
than the linear approximation, is used for ρw± when performing the numerical integra-
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Fig. 14 Long-time behavior of macroscopic quantities W , ‖�f ‖(1) , ρ, u1 and T at x1 = −0.4, −0.2,
0.2, and 0.4 for the non-symmetric initial condition (d = 1). (a) log |W | vs log t . (b) log‖�f ‖(1) vs log t .
(c) log |h − h∞| vs log t , where h = ρ, u1 and T . Here, the solid line indicates the quantities at x1 = −0.4,
the dashed line at x1 = −0.2, the long-dashed line at x1 = 0.2, and the dot-dashed line at x1 = 0.4

Table 4 Values of α(ρw±) at
large t for the non-symmetric
initial condition (d = 1)

t log t −α(ρw−) −α(ρw+)

50 1.698 0.921745 0.974493

100 2.000 0.952926 0.979931

500 2.698 0.986831 0.992228

1000 3.000 0.992608 0.995298

2000 3.301 0.995904 0.997245

Table 5 Values of α(h) at x1 = 0.2 at a large t (t = 2000) for the non-symmetric initial condition

−α(h) (d = 1, x1 = 0.2, t = 2000)

h = W h = ‖�f ‖(1) h = ρ h = u1 h = T

1.000148 1.000487 2.014651 3.035255 0.997015

tion in the integral equations corresponding to (32). In this step, we have used a fast al-
gorithm for the exponential integral E1(x) = ∫ ∞

x
(1/t) exp(−t)dt provided by J. Jin (see

http://jin.ece.uiuc.edu/routines/routines.html).

http://jin.ece.uiuc.edu/routines/routines.html
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7 Concluding Remarks

In the present study, we have investigated numerically the unsteady behavior of a free-
molecular (or Knudsen) gas contained in a vessel with a uniform and constant temperature
with special interest in the rate of approach to the final equilibrium state at rest. We assumed
diffuse reflection as the boundary condition on the vessel wall and restricted ourselves to a
vessel of spherical shape of dimension d , i.e., a sphere for the 3D case, a circular cylinder
for the 2D case, and a gap between two parallel plates for the 1D case. Then, we mainly
considered the spherically symmetric case assuming the initial condition to be the uniform
equilibrium state at rest with a different temperature from the vessel wall. Such restrictions
have made the computation for the 2D and 3D cases tractable. We have investigated the
rate of approach to the final equilibrium state for the velocity distribution function as well
as for the macroscopic quantities. The numerical results give evidence that the approach is
slow and in proportion to an inverse power of time as given by (2). This conclusion is also
supported by additional computations using a non-uniform initial condition in the 1D case.

We should note again that the initial conditions employed in the present numerical in-
vestigation are mild functions without the concentration of mass at zero molecular ve-
locity. For extreme initial conditions with the mass concentrated near ζi = 0 in a manner
compatible with the relative entropy bound, one may have a different decay rate. On the
contrary, we can consider a model system that does not contain low-speed molecules [for
instance, the free transport equation (7) with an initial condition without slow molecules
and a boundary condition that does not produce slow molecules]. In this case, one may
expect a fast (perhaps exponential) approach to the final steady state, which is in general
not an equilibrium state. Finally, if the so-called Maxwell-type boundary condition [i.e.,
αac × (diffuse reflection) + (1 − αac) × (specular reflection), where αac is the accommoda-
tion coefficient] is assumed in place of diffuse reflection in the present problem, the same
result as (2) is likely to hold with a larger value of C(d), unless the coefficient αac is not
small.

Acknowledgements The authors thank Laurent Desvillettes for valuable discussions. This work is sup-
ported by the grant-in-aid for scientific research No. 20360046 from JSPS.
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